Section A (60 points)

1. <u>E</u>

2. <u>B</u>

3. <u>C</u>

4. <u>B</u>

5. <u>C</u>

6. <u>B</u>

7. <u>C</u>

8. <u>D</u>

10. <u>C</u>

11. <u>A, D</u>

12. <u>C</u>

13. <u>A</u>

14. <u>A</u>

15. <u>D</u>

16. <u>C, D</u>

17. <u>B</u>

18. <u>C, E</u>

19. <u>B</u>

20. ___D__

21. <u>E</u>

22. <u>E</u>

23. <u>A</u>

24. ___D__

25. <u>A, D</u>

26. <u>B</u>

27. <u>B</u>

28. <u>B</u>

29. ___D__

30. E

Team Number: KEY

Team Name: KEY

Section B (90 points)

- 1. (a) <u>Left-handed</u>
 - (b) <u>43.4 %</u>
 - (c) 341 J
 - (d) The IMA of the machine would increase [1] as a cone has a smaller surface area, increasing the force it exerts [1].
- 2. Rubric outlined in solutions.
- 3. (a) $\underline{1 \text{ kg}}$ $\underline{49 \text{ N}}$
 - (b) AMA = $F_{out}/F_{in} = (m_E g + 157 \text{ N})/(m_E g + 98 \text{ N})$
 - (c) $39.2 \,\mathrm{N}$
 - (d) $4 \,\mathrm{m}\,\mathrm{s}^{-2}$, upwards
- 4. (a) <u>2.86:1, 2.29:1, 1.43:1, 1.14:1, 0.914:1, 0.571:1</u> [**0.5 each**]
 - (b) 2.14
 - (c) i. $0.529 \,\mathrm{m\,s^{-1}}$
 - ii. Cadence decreases [1] . Since her power stays the same and the bicycle's IMA decreases, she must apply a greater force with a lower speed [1] .
 - (d) i. <u>39.8°</u>
 - ii. <u>205 N</u>
 - iii. a = 0.643, b = 2, c = 11.1, d = 0.5 [3 each]