Science Olympiad Boyceville Invitational December 7, 2024

Astronomy C Answer Key

Exploring the World of Science

ANSWER KEY ANSWER KEY

Section A (40 points)

1.	B	2. <u>B</u>	3. <u>B</u>	4	A
5.	D	6. <u>ABDC</u>	7. <u>BADC</u>	8	D
9.	A	10. <u>D</u>	11. <u> </u>	12	<u> </u>
13.	Hydrogen fusion		14. <u> </u>	15	B
16.	High mass and small or	17	<u> </u>		
18.	The exoplanet and its st	19	D		
20		1 1 4 6 • 4 11			

20. High velocity ejecta hit dense pockets of interstellar medium and form shocks. The shocked material is ionized and excited which then produces emissions.

Section B (15 points)

- Five spectral peaks at <u>915 eV</u>, 1480 eV, <u>1750 eV</u>, <u>2130 eV</u>, and 7480 eV. (Accept within ±10%) Don't deduct for omitting 1480 eV or 7480 eV peaks.
- 2. Accept 300 to 800.
- 3. Rotation of the accretion disk.
- 4. 19.4 h (Accept 18.8–19.7). Half credit for 69 000 s (Accept 68 000–71 000).
- 5. 43.6 h. Half credit for 1.57×10^5 s. Exposure is greater than object's period.

7. <u>Rotation from brightness variations</u>. For instance, clumps in the disk or envelope transiting the star, or dark sunspots on the star rotating in and out of view.

Section C (45 points)

1. <u>A</u>	2. J	3. <u> </u>	4. <u>H</u>	5. <u>F</u>
6. <u>H or I</u>	7. <u> </u>	8. <u> </u>	9. <u> </u>	10. <u>D</u>

- 11. (a) Stellar wind from young stars pushes gas and dust out
 - (b) [3 pts] The <u>blue star is older</u> (1). Its stellar wind has had enough time to clear out the material it formed in. The stars in the colored regions are newly forming protostars still shrouded in dust. <u>Any justification based on the presence of the cavity</u> (2).
 - (c) Near-Infrared Camera (NIRCam)Only (1) if mentions infrared or JWST.
- 12. (a) Rotational period equals orbital period (1). Moon, Phobos, Deimos, Pluto/Charon, etc. (1)
 - (b) Quartz
 - (c) Transmission spectroscopy
- 13. (a) Optical (left), infrared (right) (1 each)
 - (b) Transit
 - (c) Limb darkening, grazing/high impact factor (1 each)
- 14. (a) Epsilon Eridani
 - (b) Radial-velocity
 - (c) <u>Magnetic activity</u> led to doppler jitter

Section D (40 points)

Award up to half credit for correct work with incorrect answer

- 1. (a) [2 pts] d = 1/p. d = 3260 ly (Accept 3250–3270)
 - (b) [2 pts] No, the system is stationary (1). When both of the curves "meet", the orbital component of their radial velocity is 0 so we get the radial velocity of the system (1).
 - (c) [2 pts] The maximum radial velocity represents the true velocity of the star.
 - (d) [3 pts] $vP = 2\pi r. r_A = 4.13 \times 10^9 \text{ m}$ (Accept 3.71–4.54) and $r_B = 8.25 \times 10^9 \text{ m}$ (Accept 7.42–9.08) Only (2) if r_A and r_B flipped.
 - (e) [3 pts] $a = r_A + r_B$ and $G(M_A + M_B)/(4\pi^2) = a^3/P^2$. $M_A + M_B = 8.35 \,\mathrm{M_{\odot}}$ (Accept 7.51–9.19)
 - (f) [2 pts] $M_A r_A = M_B r_B$. $M_A = 5.57 \,\mathrm{M_{\odot}}$ (Accept 5.00–6.13) and $M_B = 2.78 \,\mathrm{M_{\odot}}$ (Accept 2.50–3.06) Only (1.5) if M_A and M_B flipped.
- 2. (a) [2 pts] $T = b/\lambda$. T = 9660 K (Accept 8700–10600)
 - (b) [2 pts] A (1), 0 or 1 (1)
 - (c) [1 pt] Star B
 - (d) [2 pts] When radial velocity is zero (2). (Also accept $\phi = 0, 1$ (1) and $\phi = 0.5$ (1))
 - (e) [3 pts] $v_r/c = \Delta \lambda/\lambda_0$. $v_r = -40 \,\mathrm{km \, s^{-1}}$ (Exact) (2). Moving towards Earth (1).
 - (f) [2 pts] $v_B \sin(2\pi\phi) = v_r \Rightarrow \phi = 0.532$ or 0.968. Multiple answers accepted: 0.10, 1.40, 1.60, and 2.90 d.
- 3. (a) [2 pts] Coronagraph
 - (b) [3 pts] $1.22(\lambda/d) = \sin \theta_R \approx \theta_R$. $\theta_R = 1.22 \times 10^{-6}$ rad (Exact)
 - (c) [2 pts] Planets are <u>primarily bright in infrared</u> and, more importantly, the <u>brightness ratio</u> between the planet and its star is highest for infrared. (Accept either justification)
 Only (1) if mentions infrared.
 - (d) [3 pts] $M = -2.5 \log_{10} L. +0.933$ (Exact)
 - (e) [4 pts] Identify expression for:
 - absorbed heat $[\dot{Q}_{in} = L \times (\pi D^2/4)/(4\pi d^2) \times (1-\alpha)]$ (1)
 - and emitted heat $[\dot{Q}_{out} = \varepsilon \sigma T_{eq}^4 \times (\pi D^2/2)]$ (1).
 - $T_{\rm eq} = 282 \,\mathrm{K} = 9.08 \,^{\circ}\mathrm{C}$ (Accept 0–20) (1.5). Yes, it is habitable (0.5).

Only (1) if using "standard" equilibrium temperature formula.