Science Olympiad UT Invitational October 26, 2024

Astronomy C Answer Key

ANSWER KEY ANSWER KEY

Section A (60 points)

Section B (18 points)

- 1. [1 pt] 4
- 2. [2 pts] 2022-02-20. Half credit for 2022-02-21.
- 3. [2 pts] ACIS
- 4. [3 pts] $5''$ (Accept $4-6'$)
- 5. [3 pts] 220*.*5 au (Accept 176–265 au)
- 6. [4 pts] Upper star (secondary): At a constant brightness of \sim 15 counts/sec with no noticeable change. Lower star (primary): At a constant brightness of \sim 40 counts/sec until $t \approx 761794200$ s, where it increases to ~ 60 counts/sec.

Half credit for any other qualitative or quantitative description that suggests the light curve was correctly generated.

7. [3 pts] The primary has a 50% (Accept 40–70%) increase in brightness.

Section C (55 points)

- 1. (a) [1.5 pts] 30 Doradus or Tarantula Nebula
	- (b) [2 pts] X-ray and infrared (1 each)
	- (c) [2 pts] JWST
	- (d) [2 pts] Protostars
- 2. (a) [1.5 pts] PSR B1257+12
	- (b) [2 pts] (Millisecond) pulsar
	- (c) [2 pts] 3
	- (d) $[3 \text{ pts}]$ The Arecibo (1) telescope measured the time of arrivals (TOAs) of the pulsar pulses (1) . Gravitational perturbations (1) from the orbiting planets caused the TOA to vary sinusoidally.
- 3. (a) [2 pts] Radial-velocity or doppler spectroscopy
	- (b) [3 pts] It's in an elliptical orbit (1). If it was in a circular orbit, it would exhibit a sinusoidal radial-velocity curve, which is not the case. Any justification based on the shape of the curve (2) .
	- (c) [2 pts] Accept 0.923 to 0.934
- 4. (a) [2 pts] Image 4 (0.5) because pressure decreases with altitude (1.5) and it has lower pressure.
	- (b) [2 pts] Weather patterns with storms and fronts
	- (c) $\lceil 3 \text{ pts} \rceil$ The dayside-nightside temperature gradient is more strongly maintained (1.5) since Image 4 is at a higher altitude and the thermal time scale is shorter (1.5) .
- 5. (a) [3 pts] Accept 6 or 7
	- (b) [2 pts] Can't determine the radius of exoplanets detected only by the radial-velocity method
	- (c) [2 pts] (Hot) Neptune desert
	- (d) [3 pts] Exoplanets so close to their host star would either have enough mass to remain Jupiter-sized or their primordial atmosphere would be completely eroded.

(1) for *only* mentioning the exoplanet is close or hot.

- 6. (a) [3 pts] Planets form from protoplanetary disks (1) , which spin in the same direction (1) as their star. So, we'd $\frac{expect}{expect}$ objects formed from them to have the same behavior (1) .
	- (b) $[3 \text{ pts}]$ Horizontal line showing the orbit of WASP-17b (1) with its direction or orbital axis. WASP-17 placed at the center of the orbit with a spin direction 150° clockwise or counterclockwise from the orbital axis (2).
	- (c) [2 pts] Rossiter–McLaughlin effect
- 7. (a) [3 pts] HD 80606, WASP-17b, WASP-121b, LTT 9779b, GJ 1214 b, K2-18b, TOI-270d, LHS 3844b, WD 1856+534, Kepler-62, AU Microscopii (1 for 8–11; 2 for 12–14; 3 for 15–16 correct) (or NOT: Orion Nebula, 30 Doradus, PSR B1257+12, 55 Cancri, Epsilon Eridani)
	- (b) [2 pts] (Orion Nebula) 412 pc (Accept 390–450 pc)
	- (c) [2 pts] Direct imaging

Section D (37 points)

Award up to half credit for correct work with incorrect answer

- 1. (a) [3 pts] $0.8''$ (Exact). *Only* (1) for $0.4''$.
	- (b) [3 pts] 5*.*51 (Exact)
	- (c) $[3 \text{ pts}]$ 0.492 L_{\odot} (Accept $0.48 0.55 \text{ L}_{\odot}$)
	- (d) [3 pts] 5550 K (Accept 5450–5700 K). If using $L = 0.7 L_{\odot}$, 6060 K (Accept 6010–6110 K)
	- (e) $[3 \text{ pts}]$ 521 nm (Accept 510–530 nm). If using $T = 4160 \text{ K}$, 697 nm (Accept 690–710 nm)
	- (f) [4 pts] 173 K (Accept 168–178 K). If using $T = 4160$ K, 130 K (Accept 125–135 K) (3) Since this is below the freezing point of water, is not in the habitable zone (1) .
- 2. (a) [4 pts] $a \cos(i) = bR_s$. Since $0 \le b \le 1$, $i \ge \cos^{-1}(R_s/a)$. $(i \ge \cos^{-1}((R_s + R_p)/a)$ also accepted)
	- (b) [3 pts] $d = (R_p/R_s)^2$. *Only* (1) for $d = (R_s^2 R_p^2)/(R_s^2)$.
	- (c) [4 pts] From Kepler's third law, $a^3 = \frac{GM_s}{4\pi^2}T^2$ (1). Substituting into the circular orbit velocity formula $v_p = \sqrt{\frac{GM_s}{a}}$ (1), we get $v_p = (\frac{2\pi GM_s}{T})^{1/3}$ (2).
	- (d) [4 pts] Because the planet and host star orbit around their center of mass, $M_p v_p = M_s v_s$, where v_s is the true velocity of the star, which equals *v*max in the case of an edge-on orbit. So we can write:

$$
M_p = \frac{M_s v_{\text{max}}}{v_p}.
$$

Only (3) for $M_p = (M_s v_s)/v_p$.

(e) [3 pts] If the orbit is not edge-on, $v_{\text{max}} = v_s \sin(i)$, as v_{max} is the radial component of the star's true velocity. So we get:

$$
M_p = \frac{M_s v_{\text{max}}}{v_p \sin(i)}.
$$